قام خبراء كاسبرسكي بإجراء بحث كان الهدف منه دراسة إمكانية اكتشاف روابط التصيد على روبوت الدردشة القائم على الذكاء الاصطناعي «شات جي بي تي». وأثبت هذا الروبوت في مرات سابقة قدرته على إنشاء رسائل بريد إلكتروني للتصيد الاحتيالي، وكتابة برامج خبيثة، لكن فاعليته في اكتشاف الروابط الخبيثة كانت محدودة.
وكشفت الدراسة أيضاً أنه رغم معرفة هذا الروبوت الكثير عن التصيد الاحتيالي، مع إمكانية تخمين هدف هجوم التصيد، إلا أنه حقق معدلات خاطئة بمستوى عالٍ وصل إلى 64%. وفي الكثير من الأحيان، قدم تفسيرات وهمية وأدلة غير دقيقة من أجل تبرير الأحكام التي توصل إليها.
وكان ChatGPT، وهو نموذج مدعوم بالذكاء الاصطناعي، موضوع نقاش في عالم الأمن السيبراني بسبب قدرته على إنشاء رسائل بريد إلكتروني تصيدية، والمخاوف بشأن تأثيره على الأمن الوظيفي لخبراء الأمن السيبراني، رغم التحذيرات من الخبراء المختصين بأن الوقت لا يزال مبكراً جداً لتطبيق التكنولوجيا الجديدة على مثل هذه المجالات عالية الخطورة. وقرر خبراء كاسبرسكي إجراء تجربة للكشف عن قدرة ChatGPT على اكتشاف روابط التصيد، إضافة إلى مدى معرفته بالأمن السيبراني التي تعلموها أثناء التدريب.
وأجرى خبراء الشركة اختباراً على (gpt-3.5-turbo)، النموذج المسؤول عن تشغيل الروبوت ChatGPT، على أكثر من 2000 رابط اعتبرته تقنيات مكافحة التصيد الاحتيالي من كاسبرسكي تصيداً احتيالياً، وتم خلطها مع آلاف العناوين الإلكترونية الآمنة.
ولم تكن النتائج غير المرضية في مهمة الكشف مفاجئة، ولكن هل يمكن أن يساعد ChatGPT في تصنيف الهجمات والتحقيق فيها؟ بما أن المهاجمين يذكرون عادةً العلامات التجارية الشهيرة في روابطهم لخداع المستخدمين، ودفعهم للاعتقاد أن عنوان الموقع الإلكتروني موثوق، وينتمي إلى شركة حقيقية، فإن نموذج لغة الذكاء الاصطناعي يُظهر نتائج رائعة في تحديد أهداف التصيد المحتملة.
وعلى سبيل المثال، نجح ChatGPT في استخراج هدف من أكثر من نصف عناوين المواقع الإلكترونية، بما في ذلك مواقع مثل فيسبوك وتيك توك وغوغل، وأسواق التجارة الإلكترونية، مثل أمازون وستيم، والعديد من البنوك من جميع أنحاء العالم، فضلاً عن جهات كثيرة أخرى، دون أي تمارين إضافية.
وأظهرت التجربة أيضاً أن ChatGPT قد يواجه مشكلات خطيرة عندما يتعلق الأمر بإثبات وجهة نظره بشأن القرارات حول ما إذا كانت الروابط خبيثة أو آمنة.